ADVANCED OORP:
EXCEPTIONS

OVERVIEW

OVERVIEW

= Effective error handling is essential for building large
software systems
= \Want to detect when something goes wrong
= Want to correct errors when possible
= \Want to abort the program when fatal errors occur

= Traditional methods use if-statements to detect errors

= We can print error message and exit
= We can loop asking user for correct input

= \We can have functions and methods return “status codes”
to indicate if there was an error or not

(c) Prof. John Gauch, Univ. of Arkansas, 2020 2

OVERVIEW

= Java provides language support for error handling
= Exception objects are used to describe exactly what kind
of problem was detected

= New “try throw catch” syntax is used to modify the normal
program control when errors are detected

= Lesson objectives:

= Show how exceptions are defined

= Show how exceptions are “thrown”

= Show how exceptions are “caught”

= Show several example programs using exceptions

(c) Prof. John Gauch, Univ. of Arkansas, 2020 3

ADVANCED OORP:
EXCEPTIONS

PART 1
THROWING EXCEPTIONS

ERROR HANDLING

= Let’s revisit the Time class

= Private variables for hour, minute, second
= Constructor functions

= Get and set methods

= Read and print methods

= What should happen if someone enters an invalid time?

= We could print a message and abort
= We could ask the user to try again

= We could correct the invalid time

= We could “throw an exception”

(c) Prof. John Gauch, Univ. of Arkansas, 2020 5

ERROR HANDLING

public class Time

{

private int hour;
private int minute;
private int second;

public Time ()
{

hour = 0;
minute = 0;
second = 0;

public void setHour (int h) { hour = h; }
public int getHour () { return hour; }

(c) Prof. John Gauch, Univ. of Arkansas, 2020 6

ERROR HANDLING

public void read()
{

Scanner scnr = new Scanner (System.in);
System.out.print ("Enter hour in [0..23]: ");
int hour = scnr.nextInt();

// Check hour wvalue
if (hour < 0 || hour > 23)
{

System.out.println ("Error: invalid hour");
System.exit (-1);

This leaves the program
and gives error code of -1
to operating system

(c) Prof. John Gauch, Univ. of Arkansas, 2020 7

ERROR HANDLING

public void read()

{

Scanner scnr = new Scanner (System.in);
System.out.print ("Enter hour in [0..23]: ");
int hour = scnr.nextInt();

// Check hour wvalue

while (hour < 0 || hour > 23)

{
System.out.print ("Enter hour in [0..23]: ");
hour = scnr.nextInt () ;

This loop continues until
user enters a valid hour

(c) Prof. John Gauch, Univ. of Arkansas, 2020

ERROR HANDLING

public void read()
{

Scanner scnr = new Scanner (System.in);
System.out.print ("Enter hour in [0..23]: ");
int hour = scnr.nextInt();

// Check hour wvalue
if (hour < 0)

hour = 0; < This sets the hour to the
if (hour > 23) closest correct value
hour = 23;

(c) Prof. John Gauch, Univ. of Arkansas, 2020 9

THROWING EXCEPTIONS

public void read()
{

Scanner scnr = new Scanner (System.in);
System.out.print ("Enter hour in [0..23]: ");
int hour = scnr.nextInt();

// Check hour value
if (hour < 0 || hour > 23)
throw new Exception ("Error detected");

This leaves the read method and
returns the Exception object
containing the error message to
the calling function

(c) Prof. John Gauch, Univ. of Arkansas, 2020 1 0

THROWING EXCEPTIONS

public void read()

{

Scanner scnr = new Scanner (System.in);
System.out.print ("Enter hour in [0..23]: ");
int hour = scnr.nextInt();

// Check hour value

if (hour < 0 || hour > 23)
throw new IllegalArgumentException (
"Hour not in [0..23] range");

This throws a more specific
exception type and more
detailed error message to the
calling function

(c) Prof. John Gauch, Univ. of Arkansas, 2020 1 1

THROWING EXCEPTIONS

= How does this work?

= The main program calls read

main — read

(c) Prof. John Gauch, Univ. of Arkansas, 2020 1 2

THROWING EXCEPTIONS

= How does this work?

= The main program calls read
= An error is detected

main — read E

(c) Prof. John Gauch, Univ. of Arkansas, 2020 1 3

THROWING EXCEPTIONS

= How does this work?

= The main program calls read
= An error is detected
= An exception is “thrown” to main

main A—> read
)

(c) Prof. John Gauch, Univ. of Arkansas, 2020 1 4

THROWING EXCEPTIONS

= What does the main program do with the exception?

= Default: Throw the exception to operating system
= This will end the program with an error message

Exception in thread "main"
Jjava.lang.IllegalArgumentException: Hour not in [0..23] range

at Time.read(Time.java:75)

at Time.main (Time.java:128)

= This is slightly better than printing an error message and exiting
because we can see the “call stack™

= \We can do better than this ...

(c) Prof. John Gauch, Univ. of Arkansas, 2020 1 5

ADVANCED OORP:
EXCEPTIONS

PART 2
CATCHING EXCEPTIONS

CATCHING EXCEPTIONS

= How can we detect and process the exception?

= Use the Java “try catch” syntax
= Put code that could throw exceptions inside a “try block™
= Use a “catch block” to process any exceptions that occur

try
{
// run some code here
}
catch (Exception e)

{

// handle any exceptions that occur

}

(c) Prof. John Gauch, Univ. of Arkansas, 2020

17

CATCHING EXCEPTIONS

public static void main(String[] args)
{
Time time = new Time () ;
try
{ This try block has method
time.read () ; <€ calls that could cause an
time.print (); exception to be thrown

}
catch (IllegalArgumentException e)
{

String message = "Error: " + e.getMessage();
System.out.println (message) ;

(c) Prof. John Gauch, Univ. of Arkansas, 2020

18

CATCHING EXCEPTIONS

public static void main(String[] args)
{
Time time = new Time () ; .
fry If an exception does occur the
{ program jumps immediately to
time.read () ; the catch block and the
time.print (); exception is stored in e

}
catch (IllegalArgumentException e)
{

String message = "Error: " + e.getMessage();
System.out.println (message) ;

(c) Prof. John Gauch, Univ. of Arkansas, 2020

19

CATCHING EXCEPTIONS

public static void main(String[] args)
{

Time time = new Time () ;

try

{
time.read () ;
time.print ()
}
catch (IllegalArgumentException e)
{

String message = "Error: " + e.getMessage();
System.out.println (message) ; T

We can get the error message
from the exception using the
getMessage() method

(c) Prof. John Gauch, Univ. of Arkansas, 2020

20

CATCHING EXCEPTIONS

public static void main(String[] args)
{
Time time = new Time () ;
try
{ :
time.read () ; If several types of exceptions are

time.print () ; possible, we can use a more
} / generic exception type
catch (Exception e)

{

String message = "Error: " + e.getMessage();
System.out.println (message) ;

(c) Prof. John Gauch, Univ. of Arkansas, 2020

21

CATCHING EXCEPTIONS

= What happens when we have a sequence of method calls?

Method where error occurred <
Method call
Method without an exception —
handler -+
Method call
Method with an exception ——
handler R
Method call
mMA 1T —

(c) Prof. John Gauch, Univ. of Arkansas, 2020 Figure from: docs.oracle.com 2 2

CATCHING EXCEPTIONS

* The exception is thrown to the calling function

Throws exception — Method where error occurred Locking for

appropriate

| Method without an exception . handler

handler

Method with an exception
handler

main

(c) Prof. John Gauch, Univ. of Arkansas, 2020 Figure from: docs.oracle.com 23

CATCHING EXCEPTIONS

= There is no try-catch so the exception is thrown again

Throws exception — Method where error occurrad Looking for
| appropriate
. : handler
Forwards exception —| Method mt:mé lar: exception
i Looking for
appropriate
Method with an exception handler
handler
main

(c) Prof. John Gauch, Univ. of Arkansas, 2020 Figure from: docs.oracle.com 2 4

CATCHING EXCEPTIONS

= We can now handle exception and print message

Throws exception — Method where error occurrad Looking for
| appropriate

. . handler

Forwards exception —| Method wut:c:ué lar: exception

i Looking for
appropriate

Catches some _| Method with an exception . andler

other exception handler
main

(c) Prof. John Gauch, Univ. of Arkansas, 2020 Figure from: docs.oracle.com 2 5

CATCHING EXCEPTIONS

public static void main(String[] args)
{

Time time = new Time () ;

try

{
time.read () ;
time.print ()

}

catch (Exception e)

{

System.out.println("Error: " + e.getMessage()):
e.printStackTrace () ;

\ We can print the stack trace

ourselves using this method

(c) Prof. John Gauch, Univ. of Arkansas, 2020

26

CODE DEMO

Time1.java
Time2.java

(c) Prof. John Gauch, Univ. of Arkansas, 2020 27

CATCHING EXCEPTIONS

Output from Time1.java:

Testing the Timel class
Enter hour: 11

Enter minute: 22

Enter second: 333

Exception in thread "main"
Java.lang.IllegalArgumentException: Second not in [0..59]
range

at Timel.setSecond(Timel.java:50)
at Timel.read (Timel.java:79)

at Timel.main(Timel.java:123)

(c) Prof. John Gauch, Univ. of Arkansas, 2020 28

CATCHING EXCEPTIONS

Output from Time2.java:

Testing the Time2 class

Enter hour: 11

Enter minute: 22

Enter second: 333

Error: Second not in [0..59] range

Java.lang.IllegalArgumentException: Second not in [0..59]
range

at TimeZ.setSecond(TimeZ2.java:50)
at TimeZ.read (Time2.java:79)

at TimeZ2.main (Time2.java:125)

(c) Prof. John Gauch, Univ. of Arkansas, 2020 29

SUMMARY

* There are two categories of exceptions in Java
* Unchecked exceptions

= These exceptions that are not checked at compiled time,
so the method throwing the exception does not need to
handle or specify the exception. It is up to the
programmers to specify or catch the exceptions.

= Checked exceptions

= These exceptions are checked at compile time. If some
code within a method throws a checked exception, then
the method must either handle the exception or it must
specify the exception using throws keyword.

(c) Prof. John Gauch, Univ. of Arkansas, 2020 30

SUMMARY

= Common unchecked exceptions

= [llegalArgumentException // see Time examples
= ArraylndexOutOfBoundsException

= NullPointerException

= NumberFormatException

= AssertionError

= StackOverflowError

= See the Java documentation for the full list

= https://docs.oracle.com/javase/7/docs/api/java/lang/Exception.ht
ml

(c) Prof. John Gauch, Univ. of Arkansas, 2020 31

SUMMARY

= Common checked exceptions

= |OException // see |/O examples
= FileNotFoundException

= ClassNotFoundException

= |nstantiationException

= NoSuchMethodException

= NoSuchFieldException

= See the Java documentation for the full list

= https://docs.oracle.com/javase/7/docs/api/java/lang/Exception.ht
ml

(c) Prof. John Gauch, Univ. of Arkansas, 2020 32

SUMMARY

* In this section described the Java syntax for exceptions

= How to detect errors and “throw” exceptions
= How to call methods in a “try block”™
= How to handle exceptions in a “catch block”

* Final Comments
= Exception handling was invented 50 years ago and is available
in many programming languages (Java, C++, C#, Python)

= When used properly exceptions can simplify error handling in
many software applications

= Unfortunately exceptions "create hidden control-flow paths that
are difficult for programmers to reason about" (\WWeimer, 2008)

(c) Prof. John Gauch, Univ. of Arkansas, 2020 33

	Slide 1: Advanced OOP: Exceptions
	Slide 2: OVERVIEW
	Slide 3: OVERVIEW
	Slide 4: Advanced OOP: Exceptions
	Slide 5: Error handling
	Slide 6: Error handling
	Slide 7: Error handling
	Slide 8: Error handling
	Slide 9: Error handling
	Slide 10: Throwing exceptions
	Slide 11: Throwing exceptions
	Slide 12: Throwing exceptions
	Slide 13: Throwing exceptions
	Slide 14: Throwing exceptions
	Slide 15: Throwing exceptions
	Slide 16: Advanced OOP: Exceptions
	Slide 17: catching exceptions
	Slide 18: Catching exceptions
	Slide 19: Catching exceptions
	Slide 20: Catching exceptions
	Slide 21: Catching exceptions
	Slide 22: Catching exceptions
	Slide 23: Catching exceptions
	Slide 24: Catching exceptions
	Slide 25: Catching exceptions
	Slide 26: Catching exceptions
	Slide 27: CODE DEMO
	Slide 28: Catching exceptions
	Slide 29: Catching exceptions
	Slide 30: summary
	Slide 31: summary
	Slide 32: summary
	Slide 33: summary

